High levels of cyclic‐di‐GMP in plant‐associated P seudomonas correlate with evasion of plant immunity
نویسندگان
چکیده
The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour.
منابع مشابه
Responses to Elevated c-di-GMP Levels in Mutualistic and Pathogenic Plant-Interacting Bacteria
Despite a recent burst of research, knowledge on c-di-GMP signaling pathways remains largely fragmentary and molecular mechanisms of regulation and even c-di-GMP targets are yet unknown for most bacteria. Besides genomics or bioinformatics, accompanying alternative approaches are necessary to reveal c-di-GMP regulation in bacteria with complex lifestyles. We have approached this study by artifi...
متن کاملNovel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence
Bis-(3',5') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. ...
متن کاملThe Effects of Different Levels of Portulaca oleracea, Medicinal Plant, on Performance, Egg Quality, Blood Biochemical and Immunity Parameters of Mature Laying Hens
This experiment was conducted to evaluate the effects of different levels of Portulaca oleracea (PO),medicinal plant, on performance, egg traits, blood biochemical and immunity parameters of laying hens. One hundred eighty Hi-Line (W-36 strain) mature laying hens 65 up to 76 weeks of age were allotted in a completely randomized design consisting of 5 treatments and 3 replicates (12 birds per re...
متن کاملCyclic di-GMP stimulates protective innate immunity in bacterial pneumonia.
Innate immunity is the primary mechanism by which extracellular bacterial pathogens are effectively cleared from the lung. We have previously shown that cyclic di-GMP (c-di-GMP [c-diguanylate]) is a novel small molecule immunomodulator and immunostimulatory agent that triggers protective host innate immune responses. Using a murine model of bacterial pneumonia, we show that local intranasal (i....
متن کاملA cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis
Cyclic guanosine 3',5'-monophosphate (cyclic GMP) is a second messenger whose role in bacterial signalling is poorly understood. A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, which encodes a protein with a class III nucleotidyl cyclase domain, is required for cyclic GMP synthesis. Purified XC_0250 was active in cyclic GMP synthesis in vitro. The li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2016